Exercise 41

Fanciful shapes can be created by using the implicit plotting capabilities of computer algebra systems.
(a) Graph the curve with equation

$$
y\left(y^{2}-1\right)(y-2)=x(x-1)(x-2)
$$

At how many points does this curve have horizontal tangents? Estimate the x-coordinates of these points.
(b) Find equations of the tangent lines at the points $(0,1)$ and $(0,2)$.
(c) Find the exact x-coordinates of the points in part (a).
(d) Create even more fanciful curves by modifying the equation in part (a).

Solution

Below is a graph of the curve.

There are eight points where the tangent line is horizontal, and each of them are labeled.

To find the tangent lines at the points, $(0,1)$ and $(0,2)$, the slope of the curve needs to be known there. Use a computer to differentiate both sides with respect to x and then solve for y^{\prime}.

$$
\begin{gathered}
\frac{d}{d x}\left[y\left(y^{2}-1\right)(y-2)\right]=\frac{d}{d x}[x(x-1)(x-2)] \\
2(2 y-1)\left(y^{2}-y-1\right) y^{\prime}=2+3 x(x-2) \\
y^{\prime}=\frac{2+3 x(x-2)}{2(2 y-1)\left(y^{2}-y-1\right)}
\end{gathered}
$$

The slopes at each of the points can be found now.

$$
\begin{aligned}
& (0,1): \quad y^{\prime}(0,1)=\frac{2+3(0)(0-2)}{2(2 \cdot 1-1)\left(1^{2}-1-1\right)}=-1 \\
& (0,2): \quad y^{\prime}(0,2)=\frac{2+3(0)(0-2)}{2(2 \cdot 2-1)\left(2^{2}-2-1\right)}=\frac{1}{3}
\end{aligned}
$$

Therefore, the tangent lines at $(0,1)$ and $(0,2)$ are respectively

$$
y-1=-1(x-0) \quad \text { and } \quad y-2=\frac{1}{3}(x-0) .
$$

They are shown with the curve below.

To find the x-coordinates of the points where the tangent line is horizontal, set $y^{\prime}=0$ and solve for x.

$$
\begin{aligned}
y^{\prime}=\frac{2+3 x(x-2)}{2(2 y-1)\left(y^{2}-y-1\right)}=0 \rightarrow & 2+3 x(x-2)=0 \\
& x=\left\{\frac{3-\sqrt{3}}{3}, \frac{3+\sqrt{3}}{3}\right\} \approx\{0.42265,1.57735\}
\end{aligned}
$$

Adding a factor of $\sin y$ to the left side produces a more fanciful curve.

